The ribosomal binding domain for the bacterial release factors RF-1, RF-2 and RF-3

Kim K. McCaughan, Christina D. Ward, Clive N.A. Trotman and Warren P. Tate

Department of Biochemistry, University of Otago, Dunedin, New Zealand

Received 6 July 1984

The Escherichia coli ribosomal proteins, L7/L12, are dominant over L11 in modulating the binding of RF-1 and RF-2 to ribosomes. The elevated activity of RF-2 on L11-lacking ribosomes over those containing L11 is abolished by IgG against L7/L12 or by removing the L7/L12 proteins. Adding back L7/L12 restores the original phenotype. The stimulatory factor, RF-3, is active on ribosomes depleted of L7/L12 but on those which lack L11 the stimulatory effects are less pronounced or often not seen. RF-3 cannot restore activity with RF-1 or RF-2 to ribosomes lacking both these sets of proteins. The stimulatory effects of an absence of either L11 or RF-3 on the activity of RF-2 are not additive or synergistic.

Release factor Ribosome Binding domain

1. INTRODUCTION

The Escherichia coli ribosomal proteins L7/L12 are required for the binding of the release factors RF-1 and RF-2 [1,2]. They are not absolutely essential, however, since at high concentrations of factor, ribosomes lacking L7/L12 support release factor activity which is insensitive to antibody against the L7/L12 proteins [3]. Recently L11 has been shown to modulate the binding of RF-1 and RF-2 in a reciprocal manner; in the absence of L11 RF-2 has a markedly lower $K_{\rm m}$ for binding into a termination complex while RF-1 requires L11 for activity [4,5]. The important domain is in the Nterminal part of protein L11 [5]. Previously RF-2 was shown to crosslink with both L7/L12 and L11 [6]. L11 has been mapped by immunoelectron microscopy at the base of the L7/L12 stalk in the 50 S subunit [7]. The release factor, RF-3, stimulates the activities of RF-1 and RF-2 also by lowering their K_m for binding into a termination complex with the ribosome [8,9].

We have examined how the stimulatory factor, RF-3, is affected by the ribosomal proteins L7/L12 and L11 and the relative contribution of these proteins to the binding domain of RF-1 and RF-2.

2. EXPERIMENTAL

Ribosomes and release factors were isolated from E. coli MRE600 and purified as in [10,11] or from the L11-lacking E. coli mutant AM 68 [5]. Ribosomal core particles and the supernatant proteins L7/L12 derived from the 70 S ribosome were prepared as reported [3]. The formation of a substrate complex and the assay in vitro of termination dependent upon codon and release factor was essentially as described [11]. A typical reaction contained in 0.05 ml: 50 mM Tris-OAc, pH 7.2, 30 mM Mg(OAc)₂, 75 mM NH₄OAc, $1-2 \mu g$ RF-2 or 5 μ g RF-1 (purification stage V-11), 70 μ g RF-3, as indicated, 3-5 pmol of f[3H]Met-tRNA/AUG/ ribosome complex (4000 cpm/pmol), 0.08 A_{260 nm} units of UAA, UGA or UAG. Incubations were for 30 min at 20°C. The f[3H]Met was extracted into ethyl acetate at pH 1. RF-3 activity was assayed essentially as in [8]. A typical reaction contained in 0.05 ml: 50 mM Tris-OAc, pH 7.2, 30 mM Mg(OAc)₂, 50 mM KCl, 3-5 pmol f[3 H]-Met-tRNA/AUG/ribosome substrate (4000 cpm/ pmol), 1 μ g RF-2, 5 μ g RF-1, 70 μ g RF-3 (purification fraction III-8), 0.05 A_{260nm} UAA or UAG or UGA. The IgG against L7/L12 was prepared as previously described [3].

3. RESULTS AND DISCUSSION

Ribosomes lacking L7/L12 were prepared from normal 70 S ribosomes and from ribosomes derived from an *E. coli* L11-lacking mutant [5]. This gave a choice of ribosomes: (a) with a full complement of proteins, (b) with all proteins except L7/L12, (c) with all proteins except L11 and (d) with all proteins except L7/L12 and L11. The relative activities of these ribosomes with RF-1 and RF-2 are shown in fig.1. The control ribosomes showed activity with both factors which reflected the specific activity of each factor (panel a). The L7/L12 depleted ribosomes gave greatly reduced activity with both factors (panel b) while the L11-lacking ribosomes showed the expected highly elevated activity with RF-2 and low activity with

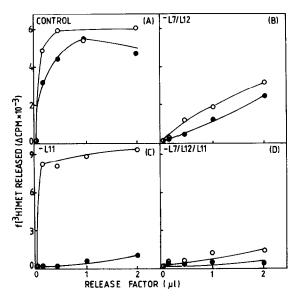


Fig.1. Activity of ribosomes depleted in L7/L12, or L11 or L7/L12/L11 with RF-1 and RF-2. Ribosomes were prepared as described in section 2 and used to make substrates for in vitro termination. Each was assayed with increasing amounts of (••••••) RF-1 (7 μg/μl) or (○•••••) RF-2 (2 μg/μl. Backgrounds in the absence of release factor varied from 300–3000 and were subtracted in each case. (A) Control ribosomes, (B) ribosomes lacking L7/L12, (C) ribosomes lacking L11, (D) ribosomes lacking L7/L12 and L11.

RF-1 (panel c). Ribosomes lacking L7/L12 and L11 had essentially no activity with RF-1 and poor activity with RF-2 (panel d). This indicates that the increased affinity of RF-2 for ribosomes lacking L11 [5] is drastically reduced when L7/L12 are removed and suggests that the modulation of RF-1 and RF-2 binding at the domain by L11 is dependent upon an initial interaction for which L7/L12 are necessary. A general conformational change in the binding domain for the factor rather than from a specific requirement of L7/L12 for the binding site could also cause this effect on removing L7/L12 from the L11-lacking ribosome. However, anti-L7/L12 had a similar effect on the activities of RF-1 and RF-2 with L11-lacking ribosomes as shown in fig.2A, arguing against a non-specific conformational change at the domain when L7/L12 are removed. The loss of activity of L11-lacking ribosomes was reversible since it could be restored by titration of the L7/L12 proteins back onto the depleted ribosomal particle as shown in fig.2B.

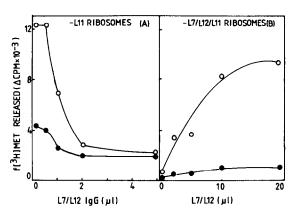


Fig.2. Activity of ribosomes lacking L11 dependent upon L7/L12. (A) Ribosomes from the L11-lacking mutant AM68 were used to make substrate for in vitro termination and assayed with (•—•) RF-1 and (○—○) RF-2 in the presence of increasing amounts of IgG against L7/L12. A background in the absence of release factor (2000 cpm) was subtracted in each case. (B) Ribosomes from the L11-lacking mutant AM68 were depleted in L7/L12. The resulting cores were used to make substrate for in vitro termination and assayed with (•—•) RF-1 and (○—○) RF-2 with increasing amounts of the L7/L12 protein fraction. A background in the absence of release factor (5000 cpm) was subtracted in each case.

The stimulation of RF-1 and RF-2 activity by RF-3 previously reported [8] was confirmed as shown in fig.3 for both RF-1 and RF-2 on ribosomes containing a full complement of proteins. When the ribosomes were depleted of L7/L12, RF-3 could stimulate the remaining activity of RF-2, and RF-1 activity but reproducibly to a lesser degree. This indicates that RF-3 can still function on L7/L12 depleted ribosomes and supports the assertion that there is a difference in the binding characteristics of RF-1 and RF-2 at the domain. Previously one fraction of an IgG against L11 was shown to affect RF-1 but not RF-2 while another fraction of the same antibody preparation affected RF-2 and not RF-1 [5]. RF-3 was not able to restore activity to L11-lacking ribosomes with RF-1 and reproducibly had little or no effect on the activity of these ribosomes with RF-2. When L7/L12 and L11 were all missing from the ribosome there was no activity with either RF-1 or

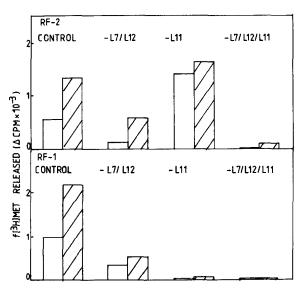


Fig. 3. Effect of RF-3 on activity of ribosomes depleted in L7/L12, or L11 or L7/L12/L11. Ribosomes were prepared as described in section 2 and used to make substrate for in vitro termination. Each was assayed as described in a codon-dependent reaction with RF-2 (2 μ g) (upper panel) or RF-1 (14 μ g) (lower panel) where 50 mM K⁺ replaced the NH⁺ of the normal assay either with partially purified RF-3 (70 μ g) (hatched bars), or without (open bars). Backgrounds in the absence of release factor (300-400 cpm) were subtracted in each case.

RF-2 and RF-3 had no effect (fig.3). The optimum conditions used here to observe the RF-3 stimulation of the in vitro termination reaction require K⁺ rather than NH[‡] in the assay. Under these conditions L11-lacking ribosomes had no activity with RF-1 and L7/L12/L11 depleted ribosomes had no activity with RF-2 in contrast to the low activities seen with these ribosomes in the presence of NH[‡] as in fig.1 and fig.2.

The lack of an RF-3 effect seen with L11-lacking ribosomes could indicate a requirement for this protein to enable RF-3 to bind at the domain. We have investigated this possibility in two ways: first at low concentrations of factor RF-2, and second in the presence of anti-L7/L12. As shown in fig.4 there was a small but reproducible stimulation of RF-2 activity with RF-3 at low concentrations of RF-2 when assayed with K⁺ (fig.4A-lower curves) although it is significantly lower than that seen with normal ribosomes (fig.3). No stimulation oc-

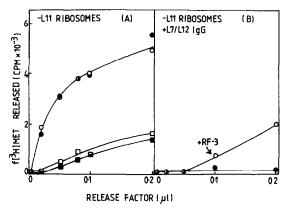


Fig.4. The effect of RF-3 on RF-2 activity on L11-lacking ribosomes. (A) L11-lacking ribosomes were used to form substrate for codon-dependent in vitro termination and assayed at low concentrations of RF-2 as indicated either under normal buffer conditions (75 mM NH₄) in the presence of RF-3 (0—0) or in its absence (• • or under conditions optimal for RF-3 stimulation (50 mM K⁺) in the presence of RF-3 (\square — \square) or in its absence (). Backgrounds in the absence of release factor (600 cpm) were subtracted in each case. (B) Codon dependent termination was measured with L11-lacking ribosomes at low concentrations of RF-2 is indicated in the presence of IgG against L7/L12 in the presence of RF-3 (O-O) or its absence (• • under conditions optimal for RF-3 stimulation. Backgrounds in the absence of release factor (2000 cpm) were subtracted in each case.

curred when assayed with NH $_{\star}^{+}$ (fig.4A, upper curves). A definite stimulation of RF-2 activity with RF-3 was observed after treatment of the ribosome with anti-L7/L12 however; it indicates that RF-3 can indeed function on L11 depleted ribosomes (fig.4B). This effect is seen because of the dominance of the L7/L12 over L11 in modulating the binding of the release factors. Moreover it provides the first clear separation of the stimulatory effects of RF-3 and of a lack of L11 on the activity of RF-2. When L7/L12 is present then the lowered $K_{\rm m}$ for RF-2 binding provided by the absence of L11 [4] masks a similar effect mediated by RF-3.

The inability of the release factors to function on ribosomes lacking L7/L12 and L11, observed under assay conditions optimal for RF-3 stimulation, was reexamined under the usual conditions for the termination assay in vitro, i.e., under optimal conditions for RF-1 and RF-2. As shown in table 1 there was stimulation of the other release factor activities by RF-3 with complete ribosomes. Removing L7/L12 resulted in RF-3 stimulating the low activities of RF-1 and RF-2 consistent with the results of fig.3. No stimulation of RF-1 activity on L11-lacking ribosomes was seen with RF-3 but any

Table 1

The effect of RF-3 on the activities of RF-1 and RF-2 with ribosomes or depleted cores

Ribosomes 70 S	RF-1 (f[³ H]Met rele		RF-2 eased (∠cpm))	
Proteins absent	RF-3	RF-3 +	RF-3	RF-3
None	7642	9571	7072	10288
L7/L12	570	1153	623	1257
L11 (AM68)	290	283	11961	11869
L11 (AM76)	1560	1441		_
L7/L12/L11	0	0	2109	1992

Ribosomes with either L7/L12 and/or L11 absent as indicated were used to form substrate for in vitro termination and assayed in a codon-dependent reaction with RF-1 (5-10 µg) and RF-2 (1-2 µg) dependent upon RF-3 (70 µg); under conditions optimal for RF-1 and RF-2 activity (75 mM NH⁴) rather than for RF-3 stimulation. Backgrounds in the absence of release factor varied from 300-2200 cpm were subtracted in each case

possible effect on RF-2 was masked by the highly elevated activity of RF-2 alone. The L11-lacking mutant AM 76, whose ribosomes have higher activity with RF-1 [5] also showed no stimulation with RF-3. Ribosomes lacking L7/L12/L11 had no activity with RF-1, some activity with RF-2, but no stimulation or restoration of activity was seen with RF-3. Given that RF-3 does stimulate RF-2 activity on L11-lacking ribosomes in the presence of anti-L7/L12 the above result may indicate that removal of L11/L7/L12 together from the release factor binding domain results in significant conformational changes which interfere with RF-3 function.

We have examined in a series of preliminary experiments the requirement of other ribosomal proteins for RF-3 activity at the release factor binding domain using 1.5 M LiCl depleted cores and a reconstitution protocol whereby a single protein is omitted [12]. Previously this approach has shown a requirement for L16 in peptidyl-tRNA hydrolysis and in addition L11 and L7/L12 in codon-dependent termination [13,4]. However, to date no additional proteins have been observed to be required for RF-3 function.

Collectively the results suggest that the L7/L12 stalk structure, which is relatively exposed on the 70 S ribosome as determined by immunoelectron microscopy [6] provides an initial recognition site for the release factors 1 and 2. This site may have a high affinity but relatively low specificity for release factors since the other protein synthesis factors, EF-Tu and EF-G, also bind here [14,15]. Once the initial contact has been made then the specificity and affinity at a functional site may be mediated by other components, such as protein L11 in the domain itself or external factors such as RF-3. RF-1 and RF-2 apparently recognise the termination codons at the A site and although their binding domain does not overlap with the tRNA binding site it overlaps with that of EF-Tu [16]. It has not yet been established whether the L7/L12/L11 binding domain and the codon recognition domain are indeed the same. The A site has been inferred to be far from the L7/L12 stalk from a number of studies but recently authors in [17] have argued persuasively that the A site is in a groove quite near the L7/L12 stalk. Our studies on the RF binding domains are more consistent with such a placement. How the release factor influences the peptidyltransferase centre, also

inferred to be far from the RF binding domain, is unclear at present.

ACKNOWLEDGEMENTS

We are grateful for the support of the Medical Research Council of New Zealand. Dr Eric Dabbs kindly supplied the bacterial strains AM 68 and AM 76, L11 lacking mutants.

REFERENCES

- [1] Brot, N., Tate, W.P., Caskey, C.T. and Weissbach, H. (1974) Proc. Natl. Acad. Sci. USA 71, 89-92.
- [2] Tate, W.P., Caskey, C.T. and Stöffler, G. (1975)J. Mol. Biol. 93, 375-389.
- [3] Armstrong, I.L. and Tate, W.P. (1980) FEBS Lett. 109, 228-232.
- [4] Tate, W.P., Schulze, H. and Nierhaus, K.H. (1983)J. Biol. Chem. 258, 1216-1220.
- [5] Tate, W.P., Dognin, M.J., Noah, M., Stöffler-Meilicke, M. and Stöffler, G. (1984) J. Biol. Chem., in press.

- [6] Stöffler, G., Tate, W.P. and Caskey, C.T. (1982)J. Biol. Chem. 257, 4203-4206.
- [7] Stöffler-Meilicke, M., Noah, M. and Stöffler, G. (1983) Proc. Natl. Acad. Sci. USA 80, 6780-6784.
- [8] Goldstein, J.L. and Caskey, C.T. (1970) Proc. Natl. Acad. Sci. USA 67, 430-437.
- [9] Goldstein, J.L., Milman, G., Scolnick, E. and Caskey, T. (1970) Proc. Natl. Acad. Sci. USA 65, 537-543.
- [10] Noll, M., Hapke, B., Schreier, M.H. and Noll, H. (1973) J. Mol. Biol. 75, 281-294.
- [11] Caskey, C.T., Scolnick, E., Tompkins, R., Milman, G. and Goldstein, J. (1971) Methods Enzymol. 20, 367-375.
- [12] Hampl, H., Schulze, H. and Nierhaus, K.H. (1981)J. Biol. Chem. 256, 2284-2288.
- [13] Tate, W.P., Schulze, H. and Nierhaus, K.H. (1983)J. Biol. Chem. 258, 12810-12815.
- [14] Hamel, E., Koka, M. and Nakamoto, T. (1972) J. Biol. Chem. 247, 805-814.
- [15] Highland, J.H., Bodley, J.W., Gordon, J., Hasenbank, R. and Stöffler, G. (1973) Proc. Natl. Acad. Sci. USA 70, 147-150.
- [16] Tate, W.P., Hornig, H. and Luhrmann, R. (1983)J. Biol. Chem. 258, 10360-10365.
- [17] Spirin, A.S. (1983) FEBS Lett. 156, 217-221.